Object

algorithms

NeuralNetwork

Related Doc: package algorithms

Permalink

object NeuralNetwork

Provides functions for neural network training

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. NeuralNetwork
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def activate(Z: DenseMatrix[Double], activation: String): DenseMatrix[Double]

    Permalink

    Performs the activation of a layer output

    Performs the activation of a layer output

    Z

    Instance vectors with neuron-transformed features

    activation

    Activation function identifier

    returns

    Activated layer output vector with same dimensions as Z

  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. def derivActivate(A: DenseMatrix[Double], activation: String): DenseMatrix[Double]

    Permalink

    Calculates the derivative of the activation layer for their output for in backpropagation.

    Calculates the derivative of the activation layer for their output for in backpropagation.

    A

    Instance vectors with with activated features

    activation

    Activation function identifier

    returns

    Activated layer output vector with same dimensions as Z

  8. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  10. def feedForward(X: DenseMatrix[Double], W: IndexedSeq[DenseMatrix[Double]], b: IndexedSeq[DenseVector[Double]], activation: String): DenseMatrix[Double]

    Permalink

    Creates the neural network output by feeding all instances the network

    Creates the neural network output by feeding all instances the network

    X

    List of input instance feature vectors

    W

    Sequence of weight matrices of the layers

    b

    Sequence of intercept vectors of the layers

    activation

    Activation function identifier

    returns

    Output neuron values for each instance

  11. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  13. def getDeltaClf(Z: DenseMatrix[Double], y: DenseVector[Int]): DenseMatrix[Double]

    Permalink

    Calculates the distance of the NN output to the truth for classification

    Calculates the distance of the NN output to the truth for classification

    Z

    List of instance network output vectors

    y

    List of instance labels

  14. def getDeltaReg(Z: DenseMatrix[Double], y: DenseVector[Double]): DenseMatrix[Double]

    Permalink

    Calculates the distance of the NN output to the truth for regression

    Calculates the distance of the NN output to the truth for regression

    Z

    List of instance network output vectors

    y

    List of instance labels

  15. def getLossClf(Z: DenseMatrix[Double], y: DenseVector[Int], W: IndexedSeq[DenseMatrix[Double]], regularization: Double): Double

    Permalink

    Calculates the classification loss of the predictions vs the truth

    Calculates the classification loss of the predictions vs the truth

    Z

    List of instance network output vectors

    y

    List of instance labels

    W

    Sequence of weight matrices of the layers

    regularization

    Regularization parameter

  16. def getLossReg(Z: DenseMatrix[Double], y: DenseVector[Double], W: IndexedSeq[DenseMatrix[Double]], regularization: Double): Double

    Permalink

    Calculates the regression loss of the predictions vs the truth

    Calculates the regression loss of the predictions vs the truth

    Z

    List of instance network output vectors

    y

    List of instance labels

    W

    Sequence of weight matrices of the layers

    regularization

    Regularization parameter

  17. def getProbabilities(Z: DenseMatrix[Double]): DenseMatrix[Double]

    Permalink

    Transforms the instance vectors in probability vectors

    Transforms the instance vectors in probability vectors

    Z

    List of instance network output vectors

    returns

    Vectors of probabilities to belong th each class

  18. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  19. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  20. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  21. def neuronTrafo(X: DenseMatrix[Double], W: DenseMatrix[Double], b: DenseVector[Double]): DenseMatrix[Double]

    Permalink

    Performs neuron transformation in one layer from n inputs to m outputs

    Performs neuron transformation in one layer from n inputs to m outputs

    X

    Instance vector with n features

    W

    Matrix of dimension n x m, n weights for m neurons

    b

    Vector with m entries, one intercept for each neuron

    returns

    Instance vector with m features

  22. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  23. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  24. def propagateBack(delta: DenseMatrix[Double], A: List[DenseMatrix[Double]], X: DenseMatrix[Double], W: IndexedSeq[DenseMatrix[Double]], b: IndexedSeq[DenseVector[Double]], activation: String, regularization: Double): List[(DenseMatrix[Double], DenseVector[Double])]

    Permalink

    Propagates the network outputs backward and saves necessary updates for weights and intercepts

    Propagates the network outputs backward and saves necessary updates for weights and intercepts

    delta

    List of output distances from truth for each output neuron for each instance

    A

    List of layer output vectors for all instances from forward propagation

    X

    List of input instance feature vectors

    W

    Sequence of weight matrices of the layers

    b

    Sequence of intercept vectors of the layers

    activation

    Activation function identifier

    regularization

    Regularization parameter

    returns

    List of updates for weight matrix and intercept vector

  25. def propagateForward(X: DenseMatrix[Double], W: IndexedSeq[DenseMatrix[Double]], b: IndexedSeq[DenseVector[Double]], activation: String): List[DenseMatrix[Double]]

    Permalink

    Propagates the instances forward and saves the intermediate output

    Propagates the instances forward and saves the intermediate output

    X

    List of instance feature vectors

    W

    Sequence of weight matrices of the layers

    b

    Sequence of intercept vectors of the layers

    activation

    Activation function identifier

    returns

    List of layer output vectors for all instances

  26. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  27. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  28. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped