Object

algorithms

kMeans

Related Doc: package algorithms

Permalink

object kMeans

Provides functions for the k-means clustering algorithm

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. kMeans
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. def cluster(X: List[List[Double]], centroids: List[List[Double]]): List[Int]

    Permalink

    Clusters the input data according to given centroids

    Clusters the input data according to given centroids

    X

    list of instances

    centroids

    coordinates of the centroids

  7. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  8. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  9. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. def getCentroids(X: List[List[Double]], y: List[Int], k: Int): List[List[Double]]

    Permalink

    Calculates the geometrical centers of the given clusters

    Calculates the geometrical centers of the given clusters

    X

    list of instances

    y

    list of cluster association

    k

    the total number of clusters

  11. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  12. def getLoss(X: List[List[Double]], y: List[Int], centroids: List[List[Double]]): Double

    Permalink

    Calculates the loss of the current clustering

    Calculates the loss of the current clustering

    X

    list of instances

    y

    list of cluster association

    centroids

    coordinates of the centroids

  13. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  14. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  15. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  16. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  17. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  18. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  19. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  20. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped