Class/Object

classifiers

DecisionTreeClassifier

Related Docs: object DecisionTreeClassifier | package classifiers

Permalink

class DecisionTreeClassifier extends Classifier

Decision tree classifier

Linear Supertypes
Classifier, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. DecisionTreeClassifier
  2. Classifier
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new DecisionTreeClassifier(json: JsValue)

    Permalink
  2. new DecisionTreeClassifier(depth: Int = DecisionTreeClassifier.depth, criterion: String = DecisionTreeClassifier.criterion, minSamplesSplit: Int = ..., verbose: Int = DecisionTreeClassifier.verbose)

    Permalink

    depth

    Depth of the tree

    criterion

    Function to measure the quality of a split

    minSamplesSplit

    Minimum number of samples required to split an internal node

    verbose

    Verbosity of output

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. var decisionTree: DecisionTree

    Permalink
  7. def diagnostics(): Map[String, List[(Double, Double)]]

    Permalink

    Provides meta-information on the classifier

    Provides meta-information on the classifier

    returns

    Map object of metric names and metric values

    Definition Classes
    Classifier
  8. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  12. def getPurity(featureX: List[Double], yThisNode: List[Int], wThisNode: List[Double], threshold: Double, crit: String): (Double, Boolean)

    Permalink

    Calculates the purity for a cut at threshold at this node

    Calculates the purity for a cut at threshold at this node

    featureX

    List of this feature for all instances at this node

    yThisNode

    List of the corresponding labels

    threshold

    The cut-off threshold to be applied

    crit

    Function to measure the quality of a split

    returns

    The purity of this split and a boolean flag indicating if signal region is greater than the threshold

  13. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  14. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  15. val name: String

    Permalink

    The name of the classifier

    The name of the classifier

    Definition Classes
    DecisionTreeClassifierClassifier
  16. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  17. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  19. def predict(X: List[List[Double]]): List[Int]

    Permalink

    Applies the trained classifier to a dataset

    Applies the trained classifier to a dataset

    X

    List of data instances

    returns

    List of predictions

    Definition Classes
    DecisionTreeClassifierClassifier
  20. def setOptimalCut(X: List[List[Double]], y: List[Int], sampleWeight: List[Double], decTree: DecisionTree, nodeIndex: Int): Unit

    Permalink

    Sets optimal feature and cut-off value for this node

    Sets optimal feature and cut-off value for this node

    X

    Feature vectors of instances at this node

    y

    List of labels of instances at this node

    sampleWeight

    Optional sample weights

    decTree

    Decision tree to update

    nodeIndex

    Index of the node to tune

  21. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  22. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  23. def train(X: List[List[Double]], y: List[Int], sampleWeight: List[Double] = Nil): Unit

    Permalink

    Performs the training of the classifier

    Performs the training of the classifier

    X

    List of training instances

    y

    List of training labels

    Definition Classes
    DecisionTreeClassifierClassifier
  24. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Classifier

Inherited from AnyRef

Inherited from Any

Ungrouped