Class/Object

clustering

kMeansClustering

Related Docs: object kMeansClustering | package clustering

Permalink

class kMeansClustering extends Clustering

k-Means clustering

To do

improve centroid initialization

Linear Supertypes
Clustering, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. kMeansClustering
  2. Clustering
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new kMeansClustering(json: JsValue)

    Permalink
  2. new kMeansClustering(k: Int = kMeansClustering.k)

    Permalink

    k

    Number of clusters to search for

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. var centroidEvolution: List[List[List[Double]]]

    Permalink
  6. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. def clusterMeans(): List[List[List[Double]]]

    Permalink

    Returns the training evolution of the cluster means

    Returns the training evolution of the cluster means

    Definition Classes
    kMeansClusteringClustering
  8. def diagnostics(): Map[String, List[(Double, Double)]]

    Permalink

    Provides meta-information on the algorithm

    Provides meta-information on the algorithm

    returns

    Map object of metric names and metric values

    Definition Classes
    kMeansClusteringClustering
  9. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  11. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  13. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  14. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  15. var lossEvolution: ListBuffer[(Double, Double)]

    Permalink
  16. val name: String

    Permalink

    The name of the clustering algorithm

    The name of the clustering algorithm

    Definition Classes
    kMeansClusteringClustering
  17. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  18. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  19. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  20. def predict(X: List[List[Double]]): List[Int]

    Permalink

    Applies the trained algorithm to a dataset

    Applies the trained algorithm to a dataset

    X

    List of data instances

    returns

    List of predictions

    Definition Classes
    kMeansClusteringClustering
  21. def refineCentroids(count: Int, X: List[List[Double]], y: List[Int], centroids: List[List[List[Double]]], stop: Boolean, maxIter: Int): List[List[List[Double]]]

    Permalink
  22. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  23. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  24. def train(X: List[List[Double]]): Unit

    Permalink

    Performs the training of the classifier

    Performs the training of the classifier

    X

    List of training instances

    Definition Classes
    kMeansClusteringClustering
  25. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Clustering

Inherited from AnyRef

Inherited from Any

Ungrouped