Class/Object

regressors

BayesRegressor

Related Docs: object BayesRegressor | package regressors

Permalink

class BayesRegressor extends Regressor

Bayes regressor

following https://stats.stackexchange.com/questions/252577/bayes-regression-how-is-it-done-in-comparison-to-standard-regression

The priors can be set using the priorPars parameter. If left empty, random values will be used. e.g. List(List(2), List(0, 1), List(1, 3)) for a posterior width 2 and Gaussian priors for the intercept (mean 0, sigma 1) and the other weights (mean 1, sigma 3)

Linear Supertypes
Regressor, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. BayesRegressor
  2. Regressor
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new BayesRegressor(json: JsValue)

    Permalink
  2. new BayesRegressor(degree: Int = BayesRegressor.degree, model: String = BayesRegressor.model, priorPars: List[List[Double]] = BayesRegressor.priorPars, randInit: Boolean = BayesRegressor.randInit, savePlots: Boolean = BayesRegressor.savePlots)

    Permalink

    degree

    Order of polynomial features to add to the instances (1 for no addition)

    model

    The shape of the prior function

    priorPars

    Parameters of the prior probability density functions

    randInit

    If set to true, initialize the prior pdf parameters randomly

    savePlots

    If set to true, save plots of algorithm performance

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def _predict(X: List[List[Double]]): List[Double]

    Permalink
  5. def _train(X: List[List[Double]], y: List[Double]): Unit

    Permalink
  6. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  7. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. def diagnostics(): Map[String, List[(Double, Double)]]

    Permalink

    Provides meta-information on the regressor

    Provides meta-information on the regressor

    returns

    Map object of metric names and metric values

    Definition Classes
    Regressor
  9. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  11. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  13. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  14. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  15. def logToProb(logs: List[Double]): List[Double]

    Permalink

    Converts a list of logarithmic likelihoods to probabilities

  16. val name: String

    Permalink

    The name of the regressor

    The name of the regressor

    Definition Classes
    BayesRegressorRegressor
  17. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  18. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  19. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  20. def predict(X: List[List[Double]]): List[Double]

    Permalink

    Applies the trained regressor to a dataset

    Applies the trained regressor to a dataset

    X

    List of data instances

    returns

    List of predictions

    Definition Classes
    BayesRegressorRegressor
  21. def priorFunc(model: String, x: Double, params: List[Double]): Double

    Permalink

    The probability distribution for the weight priors

  22. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  23. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  24. def train(X: List[List[Double]], y: List[Double]): Unit

    Permalink

    Performs the training of the regressor

    Performs the training of the regressor

    X

    List of training instances

    y

    List of training labels

    Definition Classes
    BayesRegressorRegressor
  25. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. var weight: List[Double]

    Permalink

    The weight vector to be determined by the training

  29. var width: Double

    Permalink

    The posterior width to be determined by the training

Inherited from Regressor

Inherited from AnyRef

Inherited from Any

Ungrouped