Package

regressors

Permalink

package regressors

Visibility
  1. Public
  2. All

Type Members

  1. class BayesRegressor extends Regressor

    Permalink

    Bayes regressor

    Bayes regressor

    following https://stats.stackexchange.com/questions/252577/bayes-regression-how-is-it-done-in-comparison-to-standard-regression

    The priors can be set using the priorPars parameter. If left empty, random values will be used. e.g. List(List(2), List(0, 1), List(1, 3)) for a posterior width 2 and Gaussian priors for the intercept (mean 0, sigma 1) and the other weights (mean 1, sigma 3)

  2. class DecisionTreeRegressor extends Regressor

    Permalink

    Decision tree regressor

  3. class LinearRegressor extends Regressor

    Permalink

    Linear regressor

  4. class NeuralNetworkRegressor extends Regressor

    Permalink

    Neural network regressor

  5. class RandomRegressor extends Regressor

    Permalink

    Random regressor

    Random regressor

    This is a regressor providing random predictions

  6. abstract class Regressor extends AnyRef

    Permalink

    The base class of all regressors

  7. class kNNRegressor extends Regressor

    Permalink

    k-nearest neighbors regressor

Value Members

  1. object BayesRegressor

    Permalink

    Companion object providing default parameters

  2. object DecisionTreeRegressor

    Permalink

    Companion object providing default parameters

  3. object LinearRegressor

    Permalink

    Companion object providing default parameters

  4. object NeuralNetworkRegressor

    Permalink

    Companion object providing default parameters

  5. object kNNRegressor

    Permalink

    Companion object providing default parameters

Ungrouped