Class/Object

regressors

DecisionTreeRegressor

Related Docs: object DecisionTreeRegressor | package regressors

Permalink

class DecisionTreeRegressor extends Regressor

Decision tree regressor

Linear Supertypes
Regressor, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. DecisionTreeRegressor
  2. Regressor
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new DecisionTreeRegressor(json: JsValue)

    Permalink
  2. new DecisionTreeRegressor(depth: Int = DecisionTreeRegressor.depth, minSamplesSplit: Int = ...)

    Permalink

    depth

    Depth of the tree

    minSamplesSplit

    Minimum number of samples required to split an internal node

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. var decisionTree: DecisionTree

    Permalink
  7. def diagnostics(): Map[String, List[(Double, Double)]]

    Permalink

    Provides meta-information on the regressor

    Provides meta-information on the regressor

    returns

    Map object of metric names and metric values

    Definition Classes
    Regressor
  8. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  12. def getPurity(featureX: List[Double], threshold: Double): Double

    Permalink

    Calculates the purity for a cut at threshold at this node

    Calculates the purity for a cut at threshold at this node

    featureX

    List of this feature for all instances at this node

    threshold

    The cut-off threshold to be applied

    returns

    The purity of this split

  13. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  14. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  15. val name: String

    Permalink

    The name of the regressor

    The name of the regressor

    Definition Classes
    DecisionTreeRegressorRegressor
  16. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  17. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  19. def predict(X: List[List[Double]]): List[Double]

    Permalink

    Applies the trained regressor to a dataset

    Applies the trained regressor to a dataset

    X

    List of data instances

    returns

    List of predictions

    Definition Classes
    DecisionTreeRegressorRegressor
  20. def setOptimalCut(X: List[List[Double]], y: List[Double], decTree: DecisionTree, nodeIndex: Int): Unit

    Permalink

    Sets optimal feature and cut-off value for this node

    Sets optimal feature and cut-off value for this node

    X

    Feature vectors of instances at this node

    y

    List of labels of instances at this node

    decTree

    Decision tree to update

    nodeIndex

    Index of the node to tune

  21. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  22. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  23. def train(X: List[List[Double]], y: List[Double]): Unit

    Permalink

    Performs the training of the regressor

    Performs the training of the regressor

    X

    List of training instances

    y

    List of training labels

    Definition Classes
    DecisionTreeRegressorRegressor
  24. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Regressor

Inherited from AnyRef

Inherited from Any

Ungrouped