Class/Object

regressors

LinearRegressor

Related Docs: object LinearRegressor | package regressors

Permalink

class LinearRegressor extends Regressor

Linear regressor

Linear Supertypes
Regressor, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. LinearRegressor
  2. Regressor
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new LinearRegressor(json: JsValue)

    Permalink
  2. new LinearRegressor(alpha: Double = LinearRegressor.alpha, tol: Double = LinearRegressor.tol, maxIter: Int = LinearRegressor.maxIter, degree: Int = LinearRegressor.degree)

    Permalink

    alpha

    Learning rate

    tol

    Loss tolerance to stop training

    maxIter

    Maximum number of training iterations

    degree

    Order of polynomial features to add to the instances (1 for no addition)

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def _predict(X: List[List[Double]]): List[Double]

    Permalink
  5. def _train(X: List[List[Double]], y: List[Double]): Unit

    Permalink
  6. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  7. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. def diagnostics(): Map[String, List[(Double, Double)]]

    Permalink

    Provides meta-information on the regressor

    Provides meta-information on the regressor

    returns

    Map object of metric names and metric values

    Definition Classes
    LinearRegressorRegressor
  9. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  11. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  13. def getPredictions(X: List[List[Double]], weight: List[Double]): List[Double]

    Permalink

    Returns the predicted values

  14. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  15. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  16. var lossEvolution: ListBuffer[(Double, Double)]

    Permalink
  17. def lossGradient(X: List[List[Double]], y: List[Double], weight: List[Double]): List[Double]

    Permalink

    Calculates the gradient of the loss function for the given training data

  18. val name: String

    Permalink

    The name of the regressor

    The name of the regressor

    Definition Classes
    LinearRegressorRegressor
  19. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  20. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  21. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  22. def predict(X: List[List[Double]]): List[Double]

    Permalink

    Applies the trained regressor to a dataset

    Applies the trained regressor to a dataset

    X

    List of data instances

    returns

    List of predictions

    Definition Classes
    LinearRegressorRegressor
  23. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  24. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  25. def train(X: List[List[Double]], y: List[Double]): Unit

    Permalink

    Performs the training of the regressor

    Performs the training of the regressor

    X

    List of training instances

    y

    List of training labels

    Definition Classes
    LinearRegressorRegressor
  26. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. var weight: List[Double]

    Permalink

    Weights for the linear transformation

Inherited from Regressor

Inherited from AnyRef

Inherited from Any

Ungrouped